AbstractNominated for the Bernt Johansson Outstanding Paper Awards at Nordic Steel 2019The current design rules of EN 1994‐1‐1 covering headed stud shear connectors for composite beams with profiled sheeting lead, in some cases, to an overestimation of the load bearing capacity. Owing to their empirical nature, these equations are not able to capture the real behaviour of the connector. Therefore, the load bearing mechanisms of the shear connection are identified in this work with the support of experimental and numerical results. According to the static system proposed, the concrete rib is modelled as a system of diagonal struts in combination with the stud in bending. It was observed that at 1–4 mm slip, a ”strut and beam“ mechanism prevails, where the resistance of the connector depends on the activation of the plastic hinges in the stud and on the capacity of the diagonal strut in front of it. By increasing the slip (approx. 4–10 mm), the surrounding concrete gradually crushes, while the tensile stresses at the edge of the rib reach the tensile strength of the material. Because of this loss of rotational stiffness, the bending moment in the stud decreases and the upper plastic hinge gradually moves towards the slab. At higher displacements (approx. 20–40 mm), high tensile forces develop in the stud due to non‐linear geometric effects and the load is carried through a ”strut and tie“ resistance mechanism, provided that the embedment of the stud is sufficient to prevent the rotation of the rib. As the slip increases further, failure occurs either in the form of concrete pull‐out or stud rupture.