Irisin, a secreted myokine generated by fibronectin type III domain-containing protein 5, has recently shown the potential to alleviate inflammation. Cholecystokinin-octapeptide (CCK-8) is closely associated with the inflammatory factor TNF-α, a central cytokine in inflammatory reactions. However, the interactions between irisin and CCK-8 in regulating TNF-α production and the underlying mechanism have not yet been elucidated. In the present study, irisin treatment inhibited the basal and the CCK-8-induced TNF-α production in vivo. Additionally, neutralizing circulating irisin using an irisin antiserum significantly augmented the CCK-8-induced stimulation of TNF-α levels. Moreover, the incubation of head kidney cells with irisin or CCK-8 has opposite effects on TNF-α secretion. Notably, irisin treatment inhibited basal and CCK-8-stimulated TNF-α release and gene transcription in head kidney cells. Mechanistically, the inhibitory actions of irisin on basal and CCK-8-induced TNF-α production could be negated by co-administered with the selective integrin αVβ5 inhibitor cilengitide. In addition, the inhibitory effect of irisin on basal and CCK-8-triggered TNF-α production could be abolished by the inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway. Furthermore, irisin impeded CCK-8-induced phosphorylation and degradation of IκBα, simultaneously inhibiting NF-κB phosphorylation, preventing its translocation into the nucleus, and suppressing its DNA-binding activity induced by CCK-8. Collectively, these results suggest that the inhibitory effect of irisin on TNF-α production caused by CCK-8 is mediated via the integrin αVβ5-NF-κB signaling pathways in tilapia.