Abstract
Aquaculture fish are kept for long periods in sea cages or tanks. Consequently, accumulated stress causes the fish to present serious problems with critical economic losses. Fish food has been supplemented to reduce this stress, using many components as amino acids such as tryptophan. This study aims to determine the transcriptional effect of tryptophan and cortisol on primary cell cultures of salmon head and posterior kidney. Our results indicate activation of the kynurenine pathway and serotonin activity when stimulated with tryptophan and cortisol. An amount of 95% of tryptophan is degraded by the kynurenine pathway, indicating the relevance of knowing how this pathway is activated and if stress levels associated with fish culture trigger its activation. Additionally, it is essential to know the consequence of increasing kynurenic acid "KYNA" levels in the short and long term, and even during the fish ontogeny.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.