The influence of inorganic and organic supporting electrolytes on electrochemical, optical, and conducting properties of polyaniline, poly(o-anisidine), and poly(aniline-co-o-anisidine) thin films were investigated. Homo- and copolymer thin films were synthesized electrochemically, under cyclic voltammetric conditions in aqueous solutions of inorganic acids, viz., H2SO4, HCl, HNO3, H3PO4, and HClO4 and organic acids, viz., benzoic acid, cinnamic acid, oxalic acid, malonic acid, succinic acid, and adipic acid, at room temperature. The films were characterized by cyclic voltammetry, ultraviolet (UV)–Visible spectroscopy, and conductivity measurements using four probe technique. The optical absorption spectra indicated that the formation of the conducting emeraldine salt (ES) phase took place in all the inorganic supporting electrolytes used whereas, inorganic supporting electrolytes ES phase formed only with oxalic acid. It was also observed that the current density and conductivity of thin films are greatly affected by the nature and size of the anion present in the electrolyte. The formation of copolymer has also been confirmed by differential scanning calorimetry.
Read full abstract