Although research on organic-inorganic hybrid perovskites (OIHPs) has grown exponentially in the past two decades, the high phase transition temperature of OIHP materials is still one of the insurmountable difficulties. Herein, a series of A2BX4 type OIHP materials [(2,n-DFBA)2PbCl4] (n = 3, for 1; n = 4, for 2; n = 5, for 3; n = 6, for 4) have been prepared by reactions of double-substituted difluorobenzylamine (difluorobenzylamine = DFBA) with lead chloride in concentrated HCl aqueous solution. It was found the OIHP compounds 1-3 proceed a switchable phase transition with phase transition temperatures (Tc) at 449 K (1), 462 K (2) and 500 K (3), higher than that of the parent compound [(BA)2PbCl4] (BA = benzylammonium) at 438 K, but compound 4 exhibits no phase transition. A crystal structure analysis elucidated that the organic template ligands DFBA lead in the inorganic part in compounds 1-3 to a two-dimensional (2D) perovskite structure, while that in compound 4 leads to a one-dimensional (1D) chain structure. The different double-substituted positions of fluorine atoms on benzylamine have important influences on the phase transition in compounds 1-4.
Read full abstract