Abstract The low-velocity impact finite element model of the carbon fiber-reinforced composite grid sandwich structure was established by ABAQUS. Its panels and grid are both carbon fiber-reinforced composite laminates. The constitutive relation of composite laminates is written into the VUMAT user subroutine using the Fortran language. Simulation of intralaminar failure behavior of composite laminates using the three-dimensional Hashin failure criterion. The quadratic stress criterion and the B-K energy criterion were used to simulate the interlaminar failure behavior, and the delamination damage of the composite panel and the interface debonding damage were simulated. The finite element models of four different types of composite grid sandwich structures, including quadrilateral configuration, triangular configuration, mixed configuration, and diamond configuration, were established. The influence of the single grid width and the height of the grid on the impact resistance of each composite grid configuration was studied. Compared with other geometric configurations, triangular grid sandwich structure provides the best energy absorption characteristics, and T-6-10 has the highest fracture absorption energy (15816.46 mJ). The damage propagation law of carbon fiber-reinforced composite grid sandwich structure under impact load is analyzed.
Read full abstract