Abstract

This work focus on the flexural property of polyethylene terephthalate (PET) foam-filled lattice composite sandwich panels subjected to four-point bending (FPB). The effects of different face sheet and core thicknesses on the flexural properties of the sandwich panels were analyzed. Experimental results indicated that the glass fiber-reinforced polymer (GFRP) webs can effectively prevent the sandwiches from catastrophic failure , the failure modes of the structures are dominated by foam shear, top face sheet compressive, and top face sheet-core debonding. Increasing the face sheet and PET foam thickness can effectively improve the ultimate load of the panels by 88.9% and 115.6%, respectively. An analytical model was employed to accurately predict the bending stiffness , ultimate load, and failure modes of the structures. The errors between theoretical predicted and experimental results are within 10% in terms of bending stiffness and ultimate load. Furthermore, a 3D numerical model was built to understand the failure modes and responses of the structures, a continuum damage material model for PET foam was imported into ABAQUS software by VUMAT subroutine, and Hashin failure criterion was used for GFRP. The simulated failure modes and load-displacement curves were in good agreement with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call