Higher doses of infused nucleated cells (NCs) are associated with improved clinical outcomes in bone marrow transplantation (BMT) recipients. Most clinicians recommend infusing at least 2.0×108 NCs/kg. BMT clinicians request a target NC dose, but the harvested NC dose may be below the requested NC dose even before cell processing. We conducted this retrospective study to investigate the quality of bone marrow (BM) harvest and factors that influence infused NC doses at our institution. We also correlated infused NC doses with clinical outcomes. The study population included 347 BMT recipients (median age, 11 years; range, <1 to 75 years) at the University of Minnesota between 2009 and 2019. Underlying diagnoses mainly included 39% malignant and 61% nonmalignant diagnoses. Requested, harvested, and infused NC doses, as well as cell processing data, were obtained from the Cell Therapy Laboratory; clinical outcomes data were obtained from the University of Minnesota BMT Database. BM harvests were facilitated either by our institution (61%) or by the National Marrow Donor Program (39%). Associations of infused doses with baseline characteristics were assessed using the general Wilcoxon test/Pearson's correlation coefficient. The association of infused dose with neutrophil engraftment (absolute neutrophil count >500) by day 42, platelet engraftment (>20,000) by 6 months, acute graft-versus-host disease grade II-IV, and overall survival (OS) at 5 years were evaluated using regression and Kaplan-Meier curves. The median requested NC dose was 3.0×108/kg (range, 2 to 8×108/kg), and the median harvested and infused NC doses were 4.0×108/kg and 3.6×108/kg, respectively. Only 7% of donors had a harvested dose below the minimum requested dose. Moreover, the correlation between requested doses and harvested doses was adequate, with a harvested/requested dose ratio <.5 observed in only 5% of harvests. Additionally, the harvest volume and cell processing method were significantly correlated with the infused dose. Harvest volume exceeding the median of 948 mL was related to a significantly lower infused dose (P < .01). Moreover, hydroxyethyl starch (HES)/buffy coat processing (used to reduce RBCs with major ABO incompatibility) led to a significantly lower infused dose (P < .01). Donor age (median, 19 years; range, <1 to-70 years) and sex did not significantly influence the infused dose. Finally, the infused dose was significantly correlated with neutrophil and platelet engraftment (P < .05) but not with 5-year OS (P=.87) or aGVHD (P=.33). In our program's experience, BM harvesting is efficient and meets the requested minimum dose for 93% of recipients. Harvest volume and cell process play significant roles in determining the final infused dose. Minimizing harvest volume and cell processing could lead to increased infused dose and thus improved outcomes. Moreover, a higher infused dose leads to a better rate of neutrophil and platelet engraftment but not to improved OS, which may be linked to the sample size of our study.