We give a simple proof of the strong maximum principle for viscosity subsolutions of fully nonlinear nonhomogeneous degenerate elliptic equations on the formF(x,u,Du,D2u)=0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ F(x,u,Du,D^{2}u) = 0 $$\\end{document} under suitable assumptions allowing for non-Lipschitz growth in the gradient term. In case of smooth boundaries, we also prove a Hopf lemma, a boundary Harnack inequality, and that positive viscosity solutions vanishing on a portion of the boundary are comparable with the distance function near the boundary. Our results apply, e.g., to weak solutions of an eigenvalue problem for the variable exponent p-Laplacian.
Read full abstract