Abstract

<abstract><p>In this paper, we investigate a predator-prey system with fractional type cross-diffusion incorporating the Beddington-DeAngelis functional response subjected to the homogeneous Neumann boundary condition. First, by using the maximum principle and the Harnack inequality, we establish a priori estimate for the positive stationary solution. Second, we study the non-existence of non-constant positive solutions mainly by employing the energy integral method and the Poincaré inequality. Finally, we discuss the existence of non-constant positive steady states for suitable large self-diffusion $ d_2 $ or cross-diffusion $ d_4 $ by using the Leray-Schauder degree theory, and the results reveal that the diffusion $ d_2 $ and the fractional type cross-diffusion $ d_4 $ can create spatial patterns.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.