Abstract

This paper is concerned with a two-species predator-prey reaction-diffusion system with Beddington-DeAngelis functional response and subject to homogeneous Neumann boundary conditions. By linearizing the system at the positive constant steady-state solution and analyzing the associated characteristic equation in detail, the asymptotic stability of the positive constant steady-state solution and the existence of local Hopf bifurcations are investigated. Also, it is shown that the appearance of the diffusion and homogeneous Neumann boundary conditions can lead to the appearance of codimension two Bagdanov-Takens bifurcation. Moreover, by applying the normal form theory and the center manifold reduction for partial differential equations (PDEs), the explicit algorithm determining the direction of Hopf bifurcations and the stability of bifurcating periodic solutions is given. Finally, numerical simulations supporting the theoretical analysis are also included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.