7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1007/s10440-024-00673-y
Copy DOIJournal: Acta Applicandae Mathematicae | Publication Date: Aug 1, 2024 |
License type: CC BY 4.0 |
We present an innovative approach to dimensional analysis, referred to as augmented dimensional analysis and based on a representation theorem for complete quantity functions with a scaling-covariant scalar representation. This new theorem, grounded in a purely algebraic theory of quantity spaces, allows the classical π\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\pi $\\end{document} theorem to be restated in an explicit and precise form and its prerequisites to be clarified and relaxed. Augmented dimensional analysis, in contrast to classical dimensional analysis, is guaranteed to take into account all relations among the quantities involved. Several examples are given to show that the information thus gained, together with symmetry assumptions, can lead to new or stronger results. We also explore the connection between dimensional analysis and matroid theory, elucidating combinatorial aspects of dimensional analysis. It is emphasized that dimensional analysis rests on a principle of covariance.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.