Magnetoactive elastomers (MAEs), one kind of typical novel magnetoactive driver applied in the soft robotic area, have become one of the research hotspots as they can provide biologically friendly driving methods with safe, preprogrammed, and easy-to-implement properties. In this study, novel MAEs embedding soft magnetic iron microparticles with radial chains, which can be molded in one piece, achieve 3D deformation, and co-work between multiple MAEs under single homogeneous stimuli, are proposed. Then, two kinds of novel magnetoactive drivers are established based on the proposed MAEs, which can achieve the synchronous pumping behavior of heart and the extension behavior of muscle under applied homogeneous magnetic fields. The experimental data show that (1) for the pumping behavior, the maximum instantaneous flow rate and total pumping volume can reach 200.1 and 52.3 mL/min, respectively, under 120 BPM applied harmonic magnetic field with 0-300 mT amplitude; (2) the muscle extension behavior can achieve a strain of 0.925 without a loading mass and carry a load of 40 times its own weight with a pronounced dynamic movement. It should be emphasized that the behavior of the proposed magnetoactive drivers can be excited by remote homogeneous magnetic fields, and it has great application potential in biomimetic or bioinspired soft driving systems.
Read full abstract