In recent years, there have been important developments in the refractory metal nitride coatings used for versatile applications, such as MoN, TaN, NbN, etc. Engineered approaches, including the deposition method, microstructure control, structural design, and the addition of functional elements, are put into practice for the promotion of coating characteristics. This study focuses on the microstructure and mechanical properties of ternary molybdenum tantalum nitride, MoTaN, coatings. MoTaN was deposited using a reactive radio frequency (r.f.) magnetron co-sputtering system with Mo/Ta target input power modulation control. The effects of composition and microstructure variations on its mechanical properties, including its hardness, elastic modulus, and wear behavior, were investigated. In general, the MoTaN coatings exhibited a columnar polycrystalline microstructure with MoN(111), Mo2N(111), Mo2N(200), TaN(200), and TaN(220) phases and orientations based on X-ray diffraction analysis. The addition of Ta triggered the transition of the primary orientation of Mo2N(111) into Mo2N(200). Transmission electron microscopy was utilized to analyze the transformation of the multiphase structure and changes in the grain size in terms of the Ta addition. According to nanoindentation and wear resistance analyses, superior hardness, elastic modulus, H/E, H3/E2, and wear-resistance values were identified for the MoTaN coatings with 6.8 to 10.4 at.% Ta, and a maximum hardness of 18.0 GPa was found for the MoTaN coating deposited at an input power of Mo/Ta = 150/100 W/W. An optimized hardness of 18.0 GPa and an elastic modulus of 220.7 GPa were obtained. The adjustment of the input power during deposition played a critical role in determining the overall performance of the MoTaN co-sputtering coatings. The MoTaN coating with optimized mechanical properties is attributed to its multiphase microstructure and fine columnar grain size of less than 30 nm.
Read full abstract