We continue our investigation of the response tensors in planar Hall (or planar thermal Hall) configurations where a three-dimensional Weyl/multi-Weyl semimetal is subjected to the combined influence of an electric field E\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ extbf{E}}$$\\end{document} (and/or temperature gradient ∇rT\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ abla _{{\ extbf{r}} } T$$\\end{document}) and an effective magnetic field Bχ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ extbf{B}}_\\chi$$\\end{document}, generalizing the considerations of Phys. Rev. B 108 (2023) 155132 and Physica E 159 (2024) 115914. The electromagnetic fields are oriented at a generic angle with respect to each other, thus leading to the possibility of having collinear components, which do not arise in a Hall set-up. The net effective magnetic field Bχ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ extbf{B}}_\\chi$$\\end{document} consists of two parts—(a) an actual/physical magnetic field B\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ extbf{B}}$$\\end{document} applied externally; and (b) an emergent magnetic field B5\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ extbf{B}}_5$$\\end{document} which quantifies the elastic deformations of the sample. B5\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ extbf{B}}_5$$\\end{document} is an axial pseudomagnetic field because it couples to conjugate nodal points with opposite chiralities with opposite signs. Using a semiclassical Boltzmann formalism, we derive the generic expressions for the response tensors, including the effects of the Berry curvature (BC) and the orbital magnetic moment (OMM), which arise due to a nontrivial topology of the bandstructures. We elucidate the interplay of the BC-only and the OMM-dependent parts in the longitudinal and transverse (or Hall) components of the electric, thermal, and thermoelectric response tensors. Especially, for the co-planar transverse components of the response tensors, the OMM part acts exclusively in opposition (sync) with the BC-only part for the Weyl (multi-Weyl) semimetals.
Read full abstract