In this short review (written to celebrate David Campbell's 80th birthday), we provide a theoretical description of quantum transport in nanoscale systems in the presence of single-electron excitations generated by Lorentzian voltage drives, termed Levitons. These excitations allow us to realize the analog of quantum optics experiments using electrons instead of photons. Importantly, electrons in condensed matter systems are strongly affected by the presence of different types of non-trivial correlations, with no counterpart in the domain of photonic quantum optics. After providing a short introduction about Levitons in non-interacting systems, we focus on how they operate in the presence of two types of strong electronic correlations in nanoscale systems, such as those arising in the fractional quantum Hall effect or in superconducting systems. Specifically, we consider Levitons in a quantum Hall bar of the fractional quantum Hall effect, pinched by a quantum point contact, where anyons with fractional charge and statistics tunnel between opposite edges. In this case, a Leviton-Leviton interaction can be induced by the strongly correlated background. Concerning the effect of superconducting correlations on Levitons, we show that, in a normal metal system coupled to BCS superconductors, half-integer Levitons minimize the excess noise in the Andreev regime. Interestingly, energy-entangled electron states can be realized on-demand in this type of hybrid setup by exploiting crossed Andreev reflection. The results exposed in this review have potential applications in the context of quantum information and computation with single-electron flying qubits.
Read full abstract