Conceptual biogeographic frameworks have proposed that the relative contribution of environmental and geographical factors on microbial distribution depends on several characteristics of the habitat (e.g. environmental heterogeneity, species diversity, proportion of specialist/generalist taxa), all of them defining the degree of habitat specificity, but few experimental demonstrations exist. Here, we aimed to determine the effect of habitat specificity on bacterial biogeographic patterns and assembly processes in benthic coastal ecosystems of the Southern Ocean (Patagonia, Falkland/Malvinas, Kerguelen, South Georgia and King George Islands), using 16S rRNA gene metabarcoding. The gradient of habitat specificity resulted from a 'natural experimental design' provided by the Abatus sea urchin model, from the sediment (least specific habitat) to the intestinal tissue (most specific habitat). The phylogenetic composition of the bacterial communities showed a clear differentiation by site, driven by a similar contribution of geographic and environmental distances. However, the strength of this biogeographic pattern decreased with increasing habitat specificity: sediment communities showed stronger geographic and environmental divergence compared to gut tissue. The proportion of stochastic and deterministic processes contributing to bacterial assembly varied according to the geographic scale and the habitat specificity level. For instance, an increased contribution of dispersal limitation was observed in gut tissue habitat. Our results underscore the importance of considering different habitats with contrasting levels of specificity to better understand bacterial biogeography and assembly processes over oceanographic scales.
Read full abstract