•The discovery of p-block-metal bismuth-based ORR electrocatalysts is reported •The metallic Bi nanoparticles exhibit outstanding activity for H2O2 production •The single-atomic-site Bi catalysts give excellent performance for 4e− ORR •DFT calculations explain the origin of the high performance of Bi-based ORR catalysts For oxygen reduction reaction (ORR), replacing the conventional electrocatalysts based on platinum-group metals (PGMs) with alternatives based on non-noble metals is vital for the large-scale applications of green energy conversion and chemical synthesis. Here, we report the discovery of ORR catalysts based on the p-block-metal bismuth (Bi); the selectivity in ORR pathways could be controlled by tailoring the size of Bi. Specifically, the metallic Bi nanoparticles gave a high selectivity (>96%) for 2e− ORR, an ultra-high kinetic current density (3.8 mA·cm−2 at 0.65 V), and an excellent stability; in contrast, the single-atomic-site Bi catalysts gave a good selectivity for 4e− ORR and a corresponding half-wave potential of 0.875 V, approaching that of the best-known Fe/NC catalysts. This work presents new high-performance ORR catalysts based on the p-block-metal Bi, in contrast to the intensively studied d-block transition metals, and thus would provide new perspectives for developing PGM-free ORR catalysts. For oxygen reduction reaction (ORR), replacing the conventional electrocatalysts based on platinum-group metals (PGMs) with alternatives based on non-noble metals is vital for the large-scale applications of green energy conversion and chemical synthesis. Here, we report the discovery of ORR catalysts based on the p-block-metal bismuth (Bi); the selectivity in ORR pathways could be controlled by tailoring the size of Bi. Specifically, the metallic Bi nanoparticles gave a high selectivity (>96%) for 2e− ORR, an ultra-high kinetic current density (3.8 mA·cm−2 at 0.65 V), and an excellent stability; in contrast, the single-atomic-site Bi catalysts gave a good selectivity for 4e− ORR and a corresponding half-wave potential of 0.875 V, approaching that of the best-known Fe/NC catalysts. This work presents new high-performance ORR catalysts based on the p-block-metal Bi, in contrast to the intensively studied d-block transition metals, and thus would provide new perspectives for developing PGM-free ORR catalysts.
Read full abstract