Abstract

AbstractDeveloping highly efficient catalytic sites for O2 reduction to H2O2, while ensuring the fast injection of energetic electrons into these sites, is crucial for artificial H2O2 photosynthesis but remains challenging. Herein, we report a strongly coupled hybrid photocatalyst comprising polymeric carbon nitride (CN) and a two‐dimensional conductive Zn‐containing metal–organic framework (Zn‐MOF) (denoted as CN/Zn‐MOF(lc)/400; lc, low crystallinity; 400, annealing temperature in °C), in which the catalytic capability of Zn‐MOF(lc) for H2O2 production is unlocked by the annealing‐induced effects. As revealed by experimental and theoretical calculation results, the Zn sites coordinated to four O (Zn‐O4) in Zn‐MOF(lc) are thermally activated to a relatively electron‐rich state due to the annealing‐induced local structure shrinkage, which favors the formation of a key *OOH intermediate of 2e− O2 reduction on these sites. Moreover, the annealing treatment facilitates the photoelectron migration from the CN photocatalyst to the Zn‐MOF(lc) catalytic unit. As a result, the optimized catalyst exhibits dramatically enhanced H2O2 production activity and excellent stability under visible light irradiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call