Summary As exploration for oil and gas continues, it becomes necessary to produce from deeper formations, and to meet the challenge of low permeability and higher temperatures. Unconventional shale formations are addressed with slickwater fracturing fluids, owing to the shale's unique geomechanical properties. On the other hand, conventional formations require crosslinked fracturing fluids to properly enhance productivity. Guar and its derivatives have a history of success in crosslinked hydraulic–fracturing fluids. However, they require higher polymer loading to withstand higher–temperature environments. This leads to an increase in mixing time and additive requirements. Most importantly, as a result of high polymer loading, they do not break completely and thus generate residual–polymer fragments that can plug the formation and significantly reduce fracture conductivity. In this work, a new hybrid dual–polymer hydraulic–fracturing fluid was developed. The fluid consists of a guar derivative and a polyacrylamide–based synthetic polymer. Compared with conventional fracturing fluids, this new system is easily hydrated, requires fewer additives, can be mixed “on the fly,” and is capable of maintaining excellent rheological performance at low polymer loadings. The polymer mixture solutions were prepared at a total polymer concentration of 20 to 40 lbm/1,000 gal at volume ratios of 2:1, 1:1, and 1:2. The fluids were crosslinked with a metallic crosslinker and broken with an oxidizer at 300°F. Testing focused on crosslinker/polymer–ratio analysis to effectively lower loading while maintaining sufficient performance to carry proppant at this temperature. A high–pressure/high–temperature (HP/HT) rheometer was used to measure viscosity, storage modulus, and fluid–breaking performance. An HP/HT aging cell and HP/HT see–through cell were used for proppant settling. Fourier–transform infrared (FTIR) spectroscopy, Cryo scanning electron microscopy (Cryo–SEM), and an HP/HT rheometer were also used to understand the interaction. Results indicated that the dual–polymer fracturing fluid was able to generate stable viscosity at 300°F and 100 s−1 as well as generate a higher viscosity compared with the individual–polymer fracturing fluid. Also, properly understanding and tuning the crosslinker to the polymer ratio generated excellent performance at 20 lbm/1,000 gal. The two polymers formed an improved crosslinking network that enhanced proppant–carrying properties. This fluid also demonstrated a clean and controlled breaking performance with an oxidizer. Extensive experiments were pursued to evaluate the new dual–polymer system for the first time. This system exhibited a positive interaction between the polysaccharide and polyacrylamide families and generated excellent rheological properties. The major benefit of using a mixed–polymer system is reduced polymer loading. Lower loading is highly desirable because it reduces material cost, eases field operation, and potentially lowers damage to the fracture face, proppant pack, and formation.
Read full abstract