Abstract
SummaryCrosslinking of guar and guar derivatives has played a major role in improving stimulation of oil and gas wells. While crosslinking has been used for a number of years, many facets of crosslinked systems are still not well understood. Part of the problem is that the traditional methods of determining the properties of crosslinked fluids work well for obtaining the data necessary for treatment design, but yield little insight into the nature of the crosslinked system. A good example of this is found in the development of low polymer concentration crosslinked gels. These gels are important because they lower costs and help to minimize formation damage. In this paper, methods for predicting crosslinkability at low concentrations are reported.The polymer literature is filled with methods for characterizing polymer solutions almost none of which find wide use in the development of crosslinked fracturing fluids. Dawson et al. (2000) first reported that the concentration at which a polymer solution transitions from dilute to semidilute could be used as a method for determining the potential for low concentration crosslinking in guar or guar-derivative solutions. To test this assertion, we have conducted a series of experiments that not only shows that the dilute-semidilute transition concentration is an important indicator for the polymers used in this study, but also presents a framework for exploring the potential of other polymer systems. These experiments show conclusively that low-polymer concentration crosslinking is strongly related to the value of the critical overlap concentration, c*. Both the critical overlap concentration and the critical crosslinking concentration increase in the order guar-3 < CMG < CMHPG < guar < HPG. In addition, we show that the critical crosslinking concentration for the range of polymer-crosslinking systems studied is correlated to the critical overlap concentration (ccc = 1.8(c*)0.77). A strong case is presented for the ability to crosslink at low concentrations is a strong function of the polymer type and a weak function of the crosslinker type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.