In previous studies, the influence of gas phase and surface reactions on the growth of GaN was mainly calculated through simulations. In this study, a novel gas pre-decomposition device (GPDD) was designed to experimentally investigate the effects of gas phase and surface reactions on GaN growth by changing the length and height of the isolation plates (IPs). By varying the structure of the GPDD, the effects on the growth rate and thickness uniformity of the GaN films were studied. The growth rate of the GaN sample slowed with the extension of the IPs because the longer partition plates led to insufficient gas mixing and premature consumption of the precursor trimethylgallium (TMG). The use of GPDD simultaneously achieves high crystal quality and smooth surface morphology of the GaN film. Owing to the use of GPDD, the decomposition of TMG in the pyrolysis pathway was promoted, which suppressed Ga vacancies and C impurities, resulting in weak yellow luminescence bands in the photoluminescence. This study provides a comprehensive understanding of the chemical reaction mechanism of GaN and plays an important role in promoting the development of metal-organic chemical vapor deposition equipment.
Read full abstract