The effects of PEG 6000-induced osmotic stress (-0.976 MPa) on the root growth of young plants, and the changes in abscisic acid (ABA), reactive oxygen species (ROS) and NO contents were investigated in the root tips of a drought-tolerant and a drought-sensitive wheat cultivar (Triticum aestivum L. cvs. MV Emese and GK Élet, respectively). The root length of cv. MV Emese was more effectively reduced than that of GK Élet by osmotic stress. Concomitantly, the ABA content of the 15-mm apical zone of the roots remained at the control level in GK Élet cultivar, but in MV Emese it decreased significantly after the early phase of the experiment, indicating that the accumulation of ABA is necessary for the maintenance of root growth under osmotic stress. The extent of ROS accumulation relative to the respective control was more pronounced in the elongation zone of roots in MV Emese in the later stages of the experiment, while NO concentrations increased significantly early after PEG exposure, suggesting that high concentrations of ROS and NO were unfavourable for root expansion. In contrast, in cv. Élet, the high NO content in the elongation zone declined to the control level under osmotic stress within 4 days. The changes in root growth due to osmotic stress did not exhibit a correlation with the drought tolerance of the genotypes defined on the basis of the crop yield.
Read full abstract