Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that ultimately leads to cirrhosis and hepatocellular carcinoma. Intermittent fasting has been proposed as a nonpharmacological dietary approach against metabolic diseases, including NAFLD. In this study, we aimed to investigate the effect of alternate day fasting (ADF) on high-fat diet (HFD)-induced NAFLD in C57BL/6 mice. A mouse model of fatty liver disease was established by feeding the mice a HFD for 16weeks. The mice were administered by body weight, lipid accumulation and inflammation. PPARα, FGF21, serum triglycerides (TG), total cholesterol (TC), transaminase and lipogenesis were assessed. The results showed that long-term ADF can attenuate fatty liver disease by reducing hepatic inflammation and lipid accumulation in a mouse model. Meanwhile, fasting elevated the expression of serum and hepatic fibroblast growth Factor 21 (Fgf21), a circulating hormone produced predominantly in the liver, and could effectively prevent and ameliorate the pathogenesis of NAFLD. Serum starvation also enhanced Fgf21 expression and reduced free fatty acid (FFA)-induced lipid storage in hepatocytes. Moreover, refeeding inhibited the increase in Fgf21 expression induced by fasting. This fasted-to-refed transition is closely related to the expression of Fgf21. Further in vitro and in vivo studies showed that fasting-sensitive PPARα is indispensable for the expression of Fgf21 and its protective effect on NAFLD. These findings indicated that long-term ADF protects mouse livers against HFD induced fatty liver disease through controlling PPARα/Fgf21 signaling. In conclusion, ADF can emerge as a non-pharmacological dietary approach against fatty liver disease.
Read full abstract