This article is devoted to the proof of a relative duality formula on a noetherian scheme S , giving rise on the spectrum of a field S=\operatorname{Spec}\,k to local symbols of class field theory. Relative local symbols are obtained in terms of the universal property of a couple (\Im,f) , of a S -group functor \Im , associated to a S -formal curve \mathfrak X locally of the form \mathfrak X=\operatorname{ Spf}\, A[[T]] ( S=\operatorname{Spec}\,A) . \Im is a S -group extension of the completion \check{W} of the universal S -Witt vectors group W , by the group of units {\cal O}_{S}[[T]]^{*} . We associate an S -functor \Im_{\text omb} to \Im , and we define an Abel–Jacobi morphism f:\mathfrak A=\operatorname{Spec}\ A[[T]][T^{-1}],\longrightarrow \,\Im_{\text omb} , setting up a group isomorphism: \operatorname{Hom}_{S-gr}(\Im,G)\simeq G(\mathfrak A), where G denotes a commutative smooth S -group scheme. We define an S -bihomomorphism \Im \times \Im \longrightarrow \mathbb G_m which is a local symbol (The Tame Symbol), identifying \Im to its own Cartier dual group \check\Im=\underline{\operatorname{Hom}} (\Im;\mathbb G_m) , and inducing the above isomorphism for G=\mathbb G_m . It follows that \Im may be interpreted as the relative Loop Group: \mathbb G_m(\mathfrak A) : S' \longrightarrow \mathbb G_m(\mathfrak A_{\{S'\}}) , S'=\operatorname{Spec} A' denotes a S -scheme, and we write \mathfrak A_{\{S'\}}=\operatorname{Spec} A'[[T]][T^{-1}] , and as the A -universal group of Witt-Bivectors. The couple (\Im,f) may be seen as the local analogue of the relative Rosenlicht Jacobian (Generalized Jacobian) defined by a S -smooth curve X .
Read full abstract