Abstract

Given a compact geodesic space [Formula: see text], we apply the fundamental group and alternatively the first homology group functor to the corresponding Rips or Čech filtration of [Formula: see text] to obtain what we call a persistence object. This paper contains the theory describing such persistence: properties of the set of critical points, their precise relationship to the size of holes, the structure of persistence and the relationship between open and closed, Rips and Čech induced persistences. Amongst other results, we prove that a Rips critical point [Formula: see text] corresponds to an isometrically embedded circle of length [Formula: see text], that a homology persistence of a locally contractible space with coefficients in a field encodes the lengths of the lexicographically smallest base, and that Rips and Čech induced persistences are isomorphic up to a factor [Formula: see text]. The theory describes geometric properties of the underlying space encoded and extractable from persistence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.