Abstract

We study the geometry of compact geodesic spaces with trivial first Betti number admitting large finite groups of isometries. We show that if a finite group G acts by isometries on a compact geodesic space X whose first Betti number vanishes, then diam(X)/diam(X/G)≤4|G|\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ ext {diam}}(X) / {\ ext {diam}}(X / G ) \\le 4 \\sqrt{ \\vert G \\vert }$$\\end{document}. For a group G and a finite symmetric generating set S, Pk(Γ(G,S))\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$P_k(\\varGamma (G, S))$$\\end{document} denotes the 2-dimensional CW-complex whose 1-skeleton is the Cayley graph Γ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\varGamma $$\\end{document} of G with respect to S and whose 2-cells are m-gons for 0≤m≤k\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$0 \\le m \\le k$$\\end{document}, defined by the simple graph loops of length m in Γ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\varGamma $$\\end{document}, up to cyclic permutations. Let G be a finite abelian group with |G|≥3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\vert G \\vert \\ge 3$$\\end{document} and S a symmetric set of generators for which Pk(Γ(G,S))\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$P_k(\\varGamma (G,S))$$\\end{document} has trivial first Betti number. We show that the first nontrivial eigenvalue -λ1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$-\\lambda _1$$\\end{document} of the Laplacian on the Cayley graph satisfies λ1≥2-2cos(2π/k)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\lambda _1 \\ge 2 - 2 \\cos ( 2 \\pi / k ) $$\\end{document}. We also give an explicit upper bound on the diameter of the Cayley graph of G with respect to S of the form O(k2|S|log|G|)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$O (k^2 \\vert S \\vert \\log \\vert G \\vert )$$\\end{document}. Related explicit bounds for the Cheeger constant and Kazhdan constant of the pair (G, S) are also obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call