Waste tires management and further utilization are currently one of the biggest concerns regarding the environment and human health protection. At present, shredding, grinding, or pulverization of waste tires are the most popular options for industrial recycling. Although many solutions for ground tire rubber (GTR) applications were checked and verified so far, their further implementation at an industrial scale is still very limited. In this brief review work, ground tire rubber functionalization strategies as a promising approach for the production of sustainable adsorbents of environmental pollutants were presented and discussed. Our findings indicate that suitable functionalization of GTR significantly improves adsorption capacity or selectivity of prepared GTR-based adsorbents. However, it should be mentioned that most of the performed research based on multi-step and time-consuming protocols of GTR functionalization is performed usually in the presence of solvents, which results in very low efficiency and as a consequence high-cost and limited applications. Current research trends showed that reactive extrusion can be considered as efficient, solvent-free, and pro-ecological alternative for commonly investigated periodic methods of GTR functionalization. This work shows that reactive extrusion is a promising method for further development of GTR-based adsorbents dedicated to environmental pollutants.