Abstract

In this study, the effect of the simultaneous incorporation of different contents of CaCO3 nanoparticles (NPs) and waste ground rubber tire powder (WGRT) on the forced vibration behavior of polypropylene (PP) was experimentally investigated. Hammer test with modal analysis was performed to investigate the vibrational behavior of the composite plates with one edge clamped (CFFF) support condition. Microstructural assessment of composites using Field Emission Scanning Electron Microscope (FESEM) images showed that a rise in CaCO3 nanoparticles in small weight percentages led to better dispersion and a decline in the tire phase size in the small weight percentage of WGRT. Moreover, a comparison of the modal analysis results revealed that all ternary composites, except in the first mode, had a higher damped natural frequency than pure PP. The damping ratio of all ternary composites, especially in the first and second modes, was higher than pure PP, which is due to the combined effect of WGRT and CaCO3 nanoparticles in increasing energy dissipation and damping of composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call