Recently, there has been considerable interest in noise radar over a wide spectrum of applications, such as through-wall surveillance, tracking, Doppler estimation, polarimetry, interferometry, ground penetrating or subsurface profiling, detection, synthetic aperture radar (SAR) imaging, inverse SAR imaging, foliage penetration imaging etc. Major advantages of using noise in the transmit signal are its inherent immunity from radio frequency and electromagnetic interference, improved spectrum efficiency, and hostile jamming as well as being very difficult to detect. The basic theory of digital signal processing in noise radar design is treated. The theory supports the use of noise waveforms for radar detection and imaging in such applications as covert military surveillance and reconnaissance. It is shown that by using wideband noise waveforms, one can achieve high resolution and reduced range estimation ambiguity. Mutual interference and low probability of interception capabilities of noise radar are also evaluated. The simulation results show the usefulness of the noise radar technology to improve on conventional radars.