Abstract

This paper presents a method for imaging from the slant plane data collected by a synthetic aperture radar (SAR) over the full rotation or a partial segment of a circular flight path. A Fourier analysis for the Green's function of the imaging system is provided. This analysis is the basis of an inversion for slant plane circular SAR data. The reconstruction algorithm and resolution for this SAR system are outlined. It is shown that the slant plane circular SAR, unlike the slant plane linear SAR, has the capability to extract three-dimensional imaging information of a target scene. The merits of the algorithm are demonstrated via a simulated target whose ultra wideband foliage penetrating (FOPEN) or ground penetrating (GPEN) ultrahigh frequency (UHF) radar signature varies with the radar's aspect angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.