The use of artificial intelligence (AI) in high-resolution computed tomography (HRCT) for diagnosing systemic sclerosis-associated interstitial lung disease (SSc-ILD) is relatively limited. This study aimed to analyse lung HRCT images of patients with systemic sclerosis with interstitial lung disease (SSc-ILD) using artificial intelligence (AI), conduct correlation analysis with clinical manifestations and prognosis, and explore the features and prognosis of SSc-ILD. Overall, 72 lung HRCT images and clinical data of 58 patients with SSC-ILD were collected. ILD lesion type, location, and volume on HRCT images were identified and evaluated using AI. The imaging characteristics of diffuse SSC (dSSc)-ILD and limited SSc-ILD (lSSc-ILD) were statistically analysed. Furthermore, the correlations between lesion type, clinical indicators, and prognosis were investigated. dSSc and lSSc were more prevalent in patients with a disease duration of < 1 and ≥ 5 years, respectively. SSc-ILD mainly comprises non-specific interstitial pneumonia (NSIP), usual interstitial pneumonia (UIP), and unclassifiable idiopathic interstitial pneumonia. HRCT reveals various lesion types in the early stages of the disease, with an increase in the number of lesion types as the disease progresses. Lesions appearing as grid, ground-glass, and nodular shadows were dispersed throughout both lungs, while those appearing as consolidation shadows and honeycomb were distributed across the lungs. Ground-glass opacity lesion type was absent on HRCT images of patients with SSc-ILD and pulmonary hypertension. This study showed that AI can efficiently analyse imaging characteristics of SSc-ILD, demonstrating its potential to learn from complex images with high generalisation ability.
Read full abstract