The spatiotemporally continuous data of normalized difference snow index (NDSI) are key to understanding the mechanisms of snow occurrence and development as well as the patterns of snow distribution changes. However, the presence of clouds, particularly prevalent in polar regions such as the Greenland Ice Sheet (GrIS), introduces a significant number of missing pixels in the MODIS NDSI daily data. To address this issue, this study proposes the utilization of a spatiotemporal extreme gradient boosting (STXGBoost) model generate a comprehensive NDSI dataset. In the proposed model, various input variables are carefully selected, encompassing terrain features, geometry-related parameters, and surface property variables. Moreover, the model incorporates spatiotemporal variation information, enhancing its capacity for reconstructing the NDSI dataset. Verification results demonstrate the efficacy of the STXGBoost model, with a coefficient of determination of 0.962, root mean square error of 0.030, mean absolute error of 0.011, and negligible bias (0.0001). Furthermore, simulation comparisons involving missing data and cross-validation with Landsat NDSI data illustrate the model’s capability to accurately reconstruct the spatial distribution of NDSI data. Notably, the proposed model surpasses the performance of traditional machine learning models, showcasing superior NDSI predictive capabilities. This study highlights the potential of leveraging auxiliary data to reconstruct NDSI in GrIS, with implications for broader applications in other regions. The findings offer valuable insights for the reconstruction of NDSI remote sensing data, contributing to the further understanding of spatiotemporal dynamics in snow-covered regions.
Read full abstract