In the present study, green synthetic pathway was adapted to synthesize CuO–ZnO bimetallic nanoparticles (BNPs) using Eryngium foetidum leaf extract and their anti-cancer activity against MCF7 breast cancer cell lines, anti-microbial activity and in vitro anti-oxidant activity were evaluated. Various bio-active compounds present in leaf extract were responsible for the reduction of CuO–ZnO NPs from respective Cu2+ and Zn2+ metal precursors. In the present study, the involvement of bio-active compounds present in E. foetidum extract before and after green synthesis of BNPs were evaluated for the first time. Rod-shaped and spherical structural morphology of synthesized BNPs were revealed by using FESEM, TEM, and XRD analysis with particle size ranged from 7 to 23 nm with an average size of 16.49 nm. The distribution of Cu and Zn were confirmed by elemental mapping. The green synthesized CuO–ZnO NPs showed significant cytotoxic effect with the inhibition rate 89.20 ± 0.03% at concentration of 500 μg/mL. Again, good antioxidant activity with IC50; 0.253 mg/mL and antimicrobial activity of BNPs were also evaluated with the increasing order of MIC; E. coli (7.81 μg/mL) < B. subtilis (62.5 μg/mL) < S. aureus (31.25 μg/mL).
Read full abstract