Self-organizing networks of small satellites have gradually gained attention in recent years. However, self-organizing networks of small satellites have high topological change frequency, large transmission delay, and complex communication environments, which require appropriate networking and routing methods. Therefore, this paper, considering the characteristics of satellite networks, proposes the shortest queue length-cluster-based routing protocol (SQL-CBRP) and has built a satellite self-organizing network simulation platform based on OMNeT++. In this platform, functions such as the initial establishment of satellite self-organizing networks and cluster maintenance have been implemented. The platform was used to verify the latency and packet loss rate of SQL-CBRP and to compare it with Dijkstra and Greedy Perimeter Stateless Routing (GPSR). The results show that under high load conditions, the delay of SQL-CBRP is reduced by up to 4.1%, and the packet loss rate is reduced by up to 7.1% compared to GPSR. When the communication load is imbalanced among clusters, the delay of SQL-CBRP is reduced by up to 12.7%, and the packet loss rate is reduced by up to 16.7% compared to GPSR. Therefore, SQL-CBRP performs better in networks with high loads and imbalance loads.
Read full abstract