The lowest 17-km long reach of the Huerva River valley, down to its confluence with the Ebro River in Zaragoza city, flows across salt-bearing evaporites of the Ebro Tertiary Basin (NE Spain). Upstream, the horizontally lying Miocene evaporites are interfingered with non-soluble distal alluvial fan facies (shales and sandstones). The proportion of soluble facies in the Huerva River valley increases in a downstream direction towards the basin depocenter. On the basis of the type and magnitude of the paleosubsidence features, the valley has been divided into four reaches. Along reach I, undeformed terrace deposits less than 4 m thick rest on insoluble detrital bedrock. In reaches II and III, dissolution at the alluvium–bedrock boundary has generated local thickening, deformation and paleocollapse structures, which only affect the alluvial mantle. In reach IV, terrace deposits thicken to over 60 m resulting from a large-scale synsedimentary subsidence. In this sector, subsidence locally affects to both the alluvium and the underlying bedrock. This indicates that dissolution acts at the rockhead beneath the alluvial cover (alluvial karst) and within the evaporitic substratum (interstratal karst). The development of an intraevaporitic karst in reach IV is attributed to gypsum and salt dissolution. Irregular terrace gravel bodies (gravel pockets) embedded in a fine-grained matrix associated with paleocollapse structures have been interpreted as liquefaction–fluidization structures resulting from ground acceleration and suction induced by catastrophic collapses. Subsidence is currently active in the region affecting areas with a thin alluvial cover in reaches III and IV. The low subsidence activity in most of Zaragoza city is explained by the presence of thickened (around 50 m) and indurated alluvial deposits. In the surrounding area, numerous buildings in Cadrete and Santa Fe villages have been severely damaged by subsidence. Natural and human-induced subsidence favours the development of slope movements in the gypsum scarp overlooking Cadrete village. Several transport routes including the Imperial Canal (irrigation canal) and the recently completed Madrid–Barcelona high-speed railway are affected by human-induced sinkholes. The paleocollapse structures exposed in the trenches of this railway and a ring road under construction point to hazardous locations underlain by cavities and collapse structures where special protection measures should be applied. Rigid structures are recommended beneath the high-speed railway with sufficient strength to span the larger sinkholes with no deformation. Electronic monitoring devices linked to a warning system can detect subtle subsidence-induced deformations in carriageways or railways. This research demonstrates that the study of the paleokarst helps to understand the processes involved in the present-day subsidence phenomena and their general spatial distribution.