BackgroundSo far, the effect of graphene oxide (GO) and reduced graphene oxide (rGO) in rubber matrix has not been well established.MethodsThe effects of graphene oxide (GO) and reduced graphene oxide (rGO) on the physical properties of polar acrylonitrile-butadiene rubber (NBR) and non-polar Ethylene-propylene-diene terpolymer rubber (EPDM) matrix have been investigated and their properties compared. NBR vulcanizates exhibited higher cure rates compared to the EPDM systems.ResultsEffective dispersion of the nanosheets within the different matrices was observed to be a reason for the improvement in properties, but the effective nanosheets-matrix interactions played a key role in reinforcing action. This was noticeable in the various properties (crosslinking density, tensile properties, and dynamical mechanical analysis) evaluated. Typically, the polar NBR matrix was observed to show about 461 and 405% higher interactions parameter with GO and rGO fillers (loaded from 0.1~1phr) than composites of EPDM based on Kraus model.ConclusionsWhile this present work has confirmed the significance of considering the polarities of graphene sheets or derivative graphene (GSD) and their respective polymers matrices for effective property enhancement for specific applications, it has also demonstrated the future prospects of rubber-graphene nanocomposites for several applications which include structural, barrier, and dielectric energy storage materials.