Abstract

Poly(dimethyl siloxane) (PDMS)-based materials with improved photoactuation properties were prepared by the incorporation of polymer-grafted graphene oxide particles. The modification of the graphene oxide (GO) surface was achieved via a surface initiated atom transfer radical polymerization (SI ATRP) of methyl methacrylate and butyl methacrylate. The modification was confirmed by thermogravimetric analysis, infrared spectroscopy and electron microscopy. The GO surface reduction during the SI ATRP was investigated using Raman spectroscopy and conductivity measurements. Contact angle measurements, dielectric spectroscopy and dynamic mechanical analyses were used to investigate the compatibility of the GO filler with the PDMS matrix and the influence of the GO surface modification on its physical properties and the interactions with the matrix. Finally, the thermal conductivity and photoactuation properties of the PDMS matrix and composites were compared. The incorporation of GO with grafted polymer chains, especially poly(n-butyl methacrylate), into the PDMS matrix improved the compatibility of the GO filler with the matrix, increased the energy dissipation due to the improved flexibility of the PDMS chains, enhanced the damping behavior and increased the thermal conductivity. All the changes in the properties positively affected the photoactuation behavior of the PDMS composites containing polymer-grafted GO.

Highlights

  • Photomechanical actuators are materials that convert photons into mechanical motion

  • The modification of the graphene oxide (GO) particles with poly(methyl methacrylate) (PMMA) (GO–PMMA) and poly(n-butyl methacrylate) (PBMA) (GO–PBMA) polymer chains was performed via surface initiated atom transfer radical polymerization (ATRP), as previously described for other methacrylate-based monomers [29]

  • Polymer chains on the properties of the resulting polymer chains were grafted from the GO surface via SI-ATRP, and a slight reduction of the GO surface during the were grafted from the SI-ATRP, and a slight reduction of the surface during the grafting was determined using Raman spectroscopy and conductivity measurements

Read more

Summary

Introduction

Photomechanical actuators are materials that convert photons into mechanical motion. Stress and displacement are generated upon irradiation of a pre-strained sample via an external light source, i.e., the thermoplastic effect. The material absorbs the energy that is transported via thermal convection to the pre-strained polymer chains that contract and generate mechanical motion. Elastomeric photomechanical actuators are lightweight and remotely controlled. They are utilized as tactile devices [2,3], artificial muscles [4], vascular stents [5], intravascular embolic coils [6], micro-grippers [7], and micro-motors [8]. Liquid crystalline elastomers (LCE) [9,10], thermoplastic elastomers [5,11,12,13,14,15]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.