Graphene, an exceptional two-dimensional material, has attracted significant attention from the scientific community. Its unique physiochemical properties make it a suitable candidate for many applications in the field of biotechnology and medical sciences. High specific surface area, exceptionally high electrical conductivity, and good biocompatibility of graphene give it a large scope in disease diagnosis and biosensing applications. This review aims at presenting the advances in the journey of graphene-based materials and their successful implication as electrochemical nanobiosensors. The first part of the review summarizes the history, structure, and recent developments in the large-scale production of graphene. It further includes the sensing mechanism, the recent trends in biosensing, and improvements in graphene-based biosensors. The comparative analysis shows graphene-based electrochemical biosensors to have high sensitivity, long-term stability, and low detection limits compared to the various other biosensors.
.
Read full abstract