Carbon-based single atom catalysts (SACs) are promising electrocatalysts in the field of carbon dioxide reduction reactions (CO2RR) due to their high efficiency and environmental friendliness, in which the coordination environment is the key factor determining their intrinsic catalytic activity. Furthermore, rare-earth-based SACs have shown great potential on CO2RR in recent years. Meanwhile, various studies have focused on combining metals with N-doped graphene, which together form potential Mx-Ny-C active sites. This work systematically investigates the impact of varying N/C coordination numbers on Nd atoms in graphene (Nd-NxC6-x, x = 0–5) on the CO2RR reaction mechanism and catalytic performance through density functional theory methods. Detailed Gibbs free energy calculation results indicate that most catalysts undergo a two-electron reduction pathway. For Nd-N3C3, Nd-N3C3–1, Nd-N3C3–2, Nd-N4C2, Nd-N4C2–1, Nd-N4C2–2, and Nd-N5C, HCOOH is the main product, with low UL values of -0.18, -0.17, -0.03, -0.10, -0.11, -0.09, and -0.10 V, respectively. In summary, our research results not only indicate that N atoms with different coordination numbers can improve the product selectivity and catalytic activity of catalysts, but also may provide valuable theoretical insights for studying the application of rare-earth-based SACs.