AbstractWe study a family of digraphs (directed graphs) that generalises the class of Cayley digraphs. For nonempty subsets of a group G, we define the two‐sided group digraph to have vertex set G, and an arc from x to y if and only if for some and . In common with Cayley graphs and digraphs, two‐sided group digraphs may be useful to model networks as the same routing and communication scheme can be implemented at each vertex. We determine necessary and sufficient conditions on L and R under which may be viewed as a simple graph of valency , and we call such graphs two‐sided group graphs. We also give sufficient conditions for two‐sided group digraphs to be connected, vertex‐transitive, or Cayley graphs. Several open problems are posed. Many examples are given, including one on 12 vertices with connected components of sizes 4 and 8.
Read full abstract