Abstract

A CIS graph is a graph in which every maximal stable set and every maximal clique intersect. A graph is well-covered if all its maximal stable sets are of the same size, co-well-covered if its complement is well-covered, and vertex-transitive if, for every pair of vertices, there exists an automorphism of the graph mapping one to the other. We show that a vertex-transitive graph is CIS if and only if it is well-covered, co-well-covered, and the product of its clique and stability numbers equals its order. A graph is irreducible if no two distinct vertices have the same neighborhood. We classify irreducible well-covered CIS graphs with clique number at most 3 and vertex-transitive CIS graphs of valency at most 7, which include an infinite family. We also exhibit an infinite family of vertex-transitive CIS graphs which are not Cayley.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.