The aim of this study was to evaluate the efficacy of grape seed extract (GSE) on remineralization of surface and subsurface enamel lesions compared to that of sodium fluoride (NaF). A total of 20 intact bovine incisor crowns were separated from their roots and immersed in a demineralizing solution for 96 hours at 37°C to create artificial enamel lesions. The specimens were randomly divided into two groups (n = 10): 6.5% GSE solution and 1000 ppm NaF solution. The specimens were subjected to six daily pH cycles for 8 days. The microhardness test was carried out at three different stages: baseline, after artificial caries formation, and after pH cycling. Raman spectroscopy was used to evaluate the depth of enamel remineralization. Surface morphology and elemental analysis were assessed using a scanning electron microscope (SEM) and an energy dispersive X-ray (EDX) spectroscope, respectively. Statistical analysis was performed using SPSS 22.0 at a significance level of p ≤ 0.05. There was a significant increase in the mean values of enamel surface microhardness after pH cycles in the two groups compared to after artificial caries formation, but there was no significant difference between both groups. The B-type carbonate/phosphate (Ca/P) ratio at 10 and 40 µm depth revealed no significant difference between the two groups. Scanning electron microscope micrograph revealed occlusion of porosities and particle precipitation on the enamel surface of the two groups, while EDX results for the Ca/P ratio of the GSE and NaF groups were 1.59 and 1.60, respectively. Grape seed extract and NaF are equally effective in remineralizing surface and subsurface artificial enamel lesions. Grape seed extract can be considered a promising herbal material and a safe alternative to traditional NaF for the noninvasive treatment of enamel lesions.