ABSTRACTThe large volume of data and computational complexity of algorithms limit the application of hyperspectral image classification to real-time operations. This work addresses the use of different parallel processing techniques to speed up the Markov random field (MRF)-based method to perform spectral-spatial classification of hyperspectral imagery. The Metropolis relaxation labelling approach is modified to take advantage of multi-core central processing units (CPUs) and to adapt it to massively parallel processing systems like graphics processing units (GPUs). The experiments on different hyperspectral data sets revealed that the implementation approach has a huge impact on the execution time of the algorithm. The results demonstrated that the modified MRF algorithm produced classification accuracy similar to conventional methods with greatly improved computational performance. With modern multi-core CPUs, good computational speed-up can be achieved even without additional hardware support. The CPU-GPU hybrid framework rendered the otherwise computationally expensive approach suitable for time-constrained applications.
Read full abstract