Abstract

ABSTRACTThe large volume of data and computational complexity of algorithms limit the application of hyperspectral image classification to real-time operations. This work addresses the use of different parallel processing techniques to speed up the Markov random field (MRF)-based method to perform spectral-spatial classification of hyperspectral imagery. The Metropolis relaxation labelling approach is modified to take advantage of multi-core central processing units (CPUs) and to adapt it to massively parallel processing systems like graphics processing units (GPUs). The experiments on different hyperspectral data sets revealed that the implementation approach has a huge impact on the execution time of the algorithm. The results demonstrated that the modified MRF algorithm produced classification accuracy similar to conventional methods with greatly improved computational performance. With modern multi-core CPUs, good computational speed-up can be achieved even without additional hardware support. The CPU-GPU hybrid framework rendered the otherwise computationally expensive approach suitable for time-constrained applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.