Fluorescent silica nanoparticles (FSNPs) have attracted great interest for potential applications in biological and biomedical fields because they possess higher fluorescence quantum yield and better fluorescence stability as comparison with small organic fluorescent molecules. The encapsulation of covalent linkage with fluorescent organic dyes or fluorescent metal complexes has demonstrated to be the commonly adopted strategies for fabrication of FSNPs previously. However, it is still challengeable to obtain FSNPs based polymer composites with intensive fluorescence and good water dispersibility through a one-pot surface modification strategy. In this paper, we developed a facile method to fabricate novel FSNPs based polymer composites (PhE@MSNs-PEtOx) through introducing the aggregation-induced emission (AIE) dye (PhE-OH) and poly(2-ethyl-2-oxazoline) (PEtOx) onto mesoporous silica nanoparticles (MSNs) based on cationic ring opening polymerization (CROP). The resulting PhE@MSNs-PEtOx composites possess strong fluorescence emission, excellent hydrophilicity and biocompatibility. These features make the final FSNPs based polymer composites great potential for biomedical applications. Taken together, we have developed for the first time that FSNPs based polymer composites can be facilely prepared through the one-pot introduction of AIE dyes and hydrophilic PEtOx on MSNs. Moreover, the novel FSNPs based composites could also be utilized for other biomedical applications considered their properties.