Canines are widely used for real-time detection of explosives and have proven to be on par with instrumental methods. Canines are thought to rely largely upon detection of volatile chemical constituents of the explosives, though not necessarily the explosive itself. Hence, it is crucial to understand the odor available to them as generated by training aids. Previous studies have established that the Training Aid Delivery Device (TADD) developed by SciK9 is a reliable training aid that reduces cross-contamination and doubles as a storage device. A TADD comprises a standardized container, a synthetic membrane, a membrane holder, and a lid. In the work presented, activated charcoal strips were placed above and below the TADD membrane to determine the relative amounts of volatiles emitted by dynamite (i.e., ethylene glycol dinitrate (EGDN) and trinitroglycerin (NG)). The strips were eluted and the extracts tested using gas chromatography-mass spectrometry in negative ion chemical ionization mode. A series of t-tests at 95% confidence level were performed to determine any differences in vapor composition above and below the membranes. Nine synthetic membranes and six glass fiber membranes were tested in this study. It was expected that the relative concentration of volatiles would remain the same on both sides of the membrane; however, selective removal of nitroglycerin by some membranes was observed. Synthetic membranes with larger pore sizes showed no alteration in the vapor composition. Both synthetic and glass fiber membranes did not show a significant change in relative concentration of the other volatile compound in dynamite, i.e., EGDN. Out of all the membranes tested, three synthetic membranes and four glass fiber membranes showed selective alteration in odor availability of nitroglycerin in dynamite. For training purposes, membranes that do not alter the vapor composition should be used in the training aid.
Read full abstract