Abstract
A promising replacement for the radioactive sources commonly encountered in ion mobility spectrometers is a miniaturized, energy-efficient photoionization source that produce the reactant ions via soft X-radiation (2.8 keV). In order to successfully apply the photoionization source, it is imperative to know the spectrum of reactant ions and the subsequent ionization reactions leading to the detection of analytes. To that end, an ionization chamber based on the photoionization source that reproduces the ionization processes in the ion mobility spectrometer and facilitates efficient transfer of the product ions into a mass spectrometer was developed. Photoionization of pure gasses and gas mixtures containing air, N2 , CO2 and N2 O and the dopant CH2 Cl2 is discussed. The main product ions of photoionization are identified and compared with the spectrum of reactant ions formed by radioactive and corona discharge sources on the basis of literature data. The results suggest that photoionization by soft X-radiation in the negative mode is more selective than the other sources. In air, adduct ions of O2- with H2 O and CO2 were exclusively detected. Traces of CO2 impact the formation of adduct ions of O2- and Cl- (upon addition of dopant) and are capable of suppressing them almost completely at high CO2 concentrations. Additionally, the ionization products of four alkyl nitrates (ethylene glycol dinitrate, nitroglycerin, erythritol tetranitrate and pentaerythritol tetranitrate) formed by atmospheric pressure chemical ionization induced by X-ray photoionization in different gasses (air, N2 and N2 O) and dopants (CH2 Cl2 , C2 H5 Br and CH3 I) are investigated. The experimental studies are complemented by density functional theory calculations of the most important adduct ions of the alkyl nitrates (M) used for their spectrometric identification. In addition to the adduct ions [M + NO3 ]- and [M + Cl]- , adduct ions such as [M + N2 O2 ]- , [M + Br]- and [M + I]- were detected, and their gas-phase structures and energetics are investigated by density functional theory calculations. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.