The Maillard reaction performed under a stepwise increase of temperature was applied for researching the inhibition of Maillard browning caused by ellagic acid. Ellagic acid was found effective for the inhibition of melanoidin formation in the xylose-glycine Maillard reaction but depended on its dosage and the point of time it was added in the reaction system. The lightest color of the Maillard reaction products was observed when ellagic acid was added at the 90th min, which was the point of time when the Amadori rearrangement product (ARP) developed the most. LC-ESI-MS/MS analysis results showed a significant tendency of the ellagic acid hydrolysis product to react with the predominant intermediate ARP to yield an adduct. The adduct stabilized the ARP and delayed its decomposition and inhibited the downstream reactions toward browning. After the ARP was depleted, ellagic acid also showed an effect on scavenging some short-chain dicarbonyls which contributed to the inhibition of Maillard browning.