This study investigates the development of protein powder from honey bee drone broods using foam-mat drying, a scalable method suitable for community enterprises, as well as the preservation of bee broods as a food ingredient. Initially, honey bee broods were pre-treated by boiling and steaming, with steamed bee brood (S_BB) showing the highest protein content (44.71 g/100 g dry basis). A factorial design optimized the powder formulation through the foam-mat drying process, incorporating varying concentrations of S_BB, glycerol monostearate (GMS), and carboxymethyl cellulose (CMC). The physicochemical properties of the resulting powder, including yield, color spaces, water activity, solubility, protein content, and total amino acids, were evaluated. The results showed that foam-mat drying produced a stable protein powder. The binders (CMC and GMS) increased the powder's yield and lightness but negatively affected the hue angle (yellow-brown), protein content, and amino acid content. The optimal quantities of the three variables (S_BB, GMS, and CMC) were determined to be 30 g, 6 g, and 1.5 g, or 80%, 16%, and 4%, respectively. Under this formulation, the protein powder exhibited a protein content of 19.89 g/100 g. This research highlights the potential of bee brood protein powder as a sustainable and nutritious alternative protein source, enhancing food diversification and security.